Research field Integrated sensor systems
In the research field “Integrated sensor systems”, we investigate miniaturised systems manufactured in semiconductor technology consisting of microelectronic and/or microelectromechanical components for sensors applications, as well as methods to design these highly complex systems efficiently and safely.
Integrated sensor systems connect the analog with the digital world:
Electrical, mechanical and optical parameters can be directly detected, amplified, digitised and transmitted on these silicon chips with an edge length of just a few millimetres. They are mobile, energy-efficient, precise and powerful and therefore represent the key technology for the Internet-of-Things (IoT). Functionalised chip surfaces can be used to measure additional physical as well as chemical and biological parameters. With integrated sensor systems, structural sizes in the µm range can be achieved and thus properties can also be detected on a molecular scale, such as in the sequencing of DNA.
New applications and commercial technologies
We aim to pioneer new applications through functional integration and miniaturisation.
The goal of our research is always industrial exploitation. We therefore focus on system design with commercial semiconductor technology. Large quantities can be used here to achieve competitive and cost-effective solutions. In addition, IP protection and trustworthiness are strengthened.
Integrated sensor systems are incorporated into solutions for all target markets of IMMS. In the lead applications of sensor systems for in-vitro diagnostics and RFID sensors, we focus on the use of integrated sensor systems in life sciences as well as in automation technology and Industry 4.0 target markets.
Contact
Contact
Eric Schäfer, M. Sc.
Head of Microelectronics / Branch Office Erfurt
eric.schaefer(at)imms.de+49 (0) 361 663 25 35
Eric Schäfer and his team research Integrated sensor systems, especially CMOS-based biosensors, ULP sensor systems and AI-based design and test automation. The results are being incorporated into research on the lead applications Sensor systems for in-vitro diagnostics and RFID sensor technology. It will assist you with services for the development of Integrated circuits and with IC design methods.
Related content
Project
HoLoDEC
IMMS researches ultra-low-power architectures (ULP) and circuit concepts as well as energy-efficient edge-AI systems with overall system energy modeling
Project
SensInt
The IMMS is developing a CMOS image sensor for time-resolved fluorescence detection for direct integration into microfluidic cartridges using 3D screen printing.
Project
FluoResYst
The IMMS is developing a SPAD-based sensor for time-resolved readout of fluorescence-labelled DNA microarrays.
Project
StorAIge
We are researching the use of ultra-low power embedded memories in wireless sensor front-end ICs for monitoring the condition of wind turbines and individual plants produced in greenhouses.
Reference
Dr. Katja Nicolai, IL Metronic
“From my point of view, the numerous outcomes, many of them already validated by demonstrators, speak for themselves. These wireless solutions with their energy self-sufficiency are blazing the trail for quick, cheap and easy retrofitting. I envisage their use not only in manufacturing processes but in other areas such as transport and logistics.”
Reference
Sylvo Jäger, microsensys GmbH
“For a number of years now, we have been appreciative of our cooperation with IMMS. The Institute is for us an innovative technological partner in our own geographical area, capable of supporting us not only in implementing various development tasks in the ASIC design field but also of coordinating joint projects which benefit from industrial and public subsidy.”
Reference
Dr. Friedrich Scholz, Senova
“IMMS demonstrated great commitment in responding to the huge challenges on the development of the point-of-care test. Our experience demonstrates that IMMS application-oriented analyses, understands and models the biochemical processes. Furthermore, the colleagues implement the specifications with their integrated system design and are flexible in adapting the systems as necessary.”
Towards Measuring and Forecasting Noise Exposure at the VELTINS-Arena in Gelsenkirchen, Germany
Pitchapa Ngamthipwatthana1. Marco Götze2. András Kátai1. Jakob Abeßer1.IEEE International Symposium on the Internet of Sounds, Erlangen, Germany, 30 September – 2 October, 2024
1Fraunhofer Institute for Digital Media Technology (IDMT), Ilmenau, Germany. 21IMMS Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH, Ehrenbergstraße 27, 98693 Ilmenau, Germany.Methoden der digitalen Entwicklungsstadienerkennung im Wein- und Obstbau
Silvia Krug1. Martin Schieck2.Ergebniskonferenz der digitalen Experimentierfelder (Express), 4. September 2024, Berlin
1IMMS Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH, Ehrenbergstraße 27, 98693 Ilmenau, Germany. 2Universität Leipzig, Institut für Wirtschaftsinformatik, 04109 Leipzig, Germany.Clock Gate Insertion with a Yosys-based Netlist Modification Tool
Manuel Jirsak1. Adrian Pitterling1. Jonas Lienke1. Georg Gläser1.FPGA Ignite Summer School, 5. - 9. August 2024, Heidelberg, Germany
1IMMS Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH, Ehrenbergstraße 27, 98693 Ilmenau, Germany.Miniaturisierter CMOS-ISFET-Sensor für die Analytik und Diagnostik
Alexander Hofmann1.DeviceMed, Das Community-Magazin, Jahrgang 20, Ausgabe 3, Juli 2024, Seite 34 - 36, www.devicemed.de/miniaturisierter-cmos-isfet-sensor-fuer-die-analytik-und-diagnostik-a-8083cd6a17f177898150dcafde09543c/, ISSN 1860-9414 | 69029
1IMMS Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH, Ehrenbergstraße 27, 98693 Ilmenau, Germany.