Das IMMS forscht an Assistenzsystemen für Chip-Designer: Machine Learning soll Entwurfsmethoden verbessern. Foto: IMMS.
Das IMMS forscht an Assistenzsystemen für Chip-Designer: Machine Learning soll Entwurfsmethoden verbessern. Foto: IMMS.

IntelligEnt

Künstliche Intelligenz und Machine Learning für den Entwurf und die Verifikation komplexer Systeme

Das IMMS forscht an Assistenzsystemen für Chip-Designer: Machine Learning soll Entwurfsmethoden integrierter Analog/Mixed-Signal-Systeme verbessern.

Erfahrungswissen für den Entwurf gemischt analog/digitaler Systeme bislang nicht automatisierbar

Das Erfahrungswissen von Design-Ingenieuren prägt in weiten Teilen den Entwurf und die Verifikation von mikroelektronischen und mikroelektromechanischen Systemen (MEMS). Die Entwicklung solcher Systeme wird seit jeher wissenschaftlich bearbeitet und durch immer anspruchsvollere und automatisierte Entwurfsmethoden optimiert. Erfahrungswissen lässt sich allerdings oft nicht formal abbilden und damit für ein automatisiertes Entwerfen nutzen, wie das z.B. für rein digitale Systeme möglich ist. Das führt dazu, dass in komplexen, analogen oder gemischt analog/digitalen Systemen suboptimale Lösungen oder Unstimmigkeiten, wie ungünstige Anordnungen im Layout oder falsche Testlimits, erst spät erkannt werden – oft erst im Zusammenspiel der Komponenten. Die Folgen sind zusätzlicher Aufwand und hohe Kosten im Entwurf und in der Validierung der Systeme nach der Fertigung.

Ziel sind signifikante Kosten- und Risikoreduktionen im Systementwurf durch maschinelles Lernen

In der Forschergruppe „IntelligEnt“ arbeiten daher IMMS und TU Ilmenau an anwendungsorientierten Konzepten für Machine Learning im Mikroelektronik-Entwurf, die an vorhandene Methoden und Werkzeuge angebunden werden sollen. Ziel ist es, das immense Potential des maschinellen Lernens für fachliche und wissenschaftliche Weiterentwicklungen zu nutzen und damit signifikante Kosten- und Risikoreduktionen im Systementwurf zu erreichen.

Möglich wird das, indem die genannten Unstimmigkeiten zeitnah erkannt und optimiert werden. In vielen Bereichen konnten Methoden des maschinellen Lernens den Menschen übertreffen, wie z.B. in der Mustererkennung. Integriert in einen automatisierten Entwurfs- und Charakterisierungsprozess kann sie Strukturen erkennen und damit Daten reduzieren, Anomalien aufspüren und bestehende Lösungen optimieren. Dabei werden in IntelligEnt die Algorithmen des maschinellen Lernens als Werkzeug verstanden und eingesetzt, wie z.B. Regression und Klassifikation mit Deep-Learning-Methoden oder Ausreißer-Detektion mit Self- und Semisupervised Learning.

  • Die Arbeiten in IntelligEnt setzen an kritischen Schritten im Systementwurf an:

    • Modellierung – Modelle für Verhaltensprognosen erstellen: Die Erstellung von Modellen für Systemkomponenten bzw. IP ist entscheidend für die Entwurfsqualität. Die Integration von Eigenschaften, wie z.B. Stromaufnahme und Operationsregionen, in System-Level-Modelle soll mittels eines lernenden Systems automatisiert werden.
    • Entwurf von Analog-/Mixed-Signal-Schaltungen – Funktionen realisieren: Die Struktur bzw. Topologie bestimmt die Performance einer gemischt analog/digitalen Schaltung. Um diese rechnergestützt zu optimieren, wird ein Verfahren zur Strukturerkennung und -anpassung entwickelt.
    • Layout von Analog-/Mixed-Signal-Schaltungen – den Bauplan für den Chiphersteller entwerfen: Formal korrekte Layouts können Unstimmigkeiten enthalten, wie z.B. Substratkopplung, Feldtransistoren und Mismatch. Ausgehend von bestehenden Entwürfen soll ein lernendes System neue Layouts bewerten und potentielle Fehler erkennen.
    • Simulation und Verifikation – vor der Fertigung alle Schritte und Funktionen prüfen: Auf allen genannten Stufen wird das System schrittweise in immer größeren Funktionsgruppen geprüft, bevor der Chip gefertigt wird. Für die dafür durchgeführten Simulationen werden die mit den Methoden zum Machine Learning erweiterten Modelle genutzt.
    • Test und Charakterisierung – gefertigte Chips auf Herz und Nieren prüfen: Die Optimierung des Testablaufes und die Auswahl der kritischen Tests für Mixed-Signal-Systeme und MEMS ist bisher Handarbeit. Das führt u.a. dazu, dass redundante Tests ausgeführt werden. Machine-Learning-Algorithmen sind in der Lage, Abhängigkeiten sichtbar und damit nutzbar zu machen. Das Ziel ist eine Plattform für die Adaption des Testplans und die Extraktion von definierten Fehlerbildern.
  • Förderung

    Die Forschergruppe IntelligEnt wird gefördert durch den Freistaat Thüringen aus Mitteln des Europäischen Sozialfonds unter dem Kennzeichen 2018 FGR 0089.

Laufzeit

2019 – 2020

Projekt-Nr.

2018 FGR 0089